Construction Exit Pad (CEP)

Practice Description

A construction pad is a stone base pad designed to provide a buffer area where mud and caked soil can be removed from the tires of construction vehicles to avoid transporting it onto public roads. This practice applies anywhere traffic will be leaving a construction site and moving directly onto a public road or street.

Planning Considerations

Roads and streets adjacent to construction sites should be kept clean for the general safety and welfare of the public. A construction exit pad (Figure CEP-1) should be provided where mud can be removed from construction vehicle tires before they enter a public road.

Where possible the construction exit pad should be located and constructed at a site where surface runoff from the pad will not transport sediment from the pad off the site. If the pad slope toward the road exceeds 2%, a diversion ridge 6” to 8” high with 3:1 side slopes should be constructed across the foundation approximately 15 feet from the entrance. This diversion ridge should divert surface runoff from the pad away from the road and into a sediment trap or basin.
If the action of the vehicle traveling over the gravel pad does not sufficiently remove the mud or if the site is in a particularly sensitive area, a washing facility should be included with the pad (Figure CEP-2). When a washing facility is required all wash water shall be diverted to a sediment trap or basin.

If the construction exit pad is located in an area with soils that will not support traffic when wet, an underliner of geotextile will be required to provide stability to the pad.

Construction of stabilized roads throughout the development site should be considered to lessen the amount of mud transported by vehicular traffic. The construction exit pad should be located to provide for maximum use by construction vehicles.

Consideration should be given to limiting construction vehicles to only one ingress and egress point. Measures may be necessary to make existing traffic use the construction exit pad.
Design Criteria

Aggregate size

Aggregate should be Alabama Highway Department coarse aggregate gradation No.1.

Pad Thickness

The exit pad shall have a minimum aggregate thickness of 6”.

Geotextiles

A non-woven geotextile shall be placed underneath the aggregate. The geotextile shall be of the strength and durability required for the project to ensure the aggregate and soil base are stable. Generally, the non-woven geotextile should meet the requirements found in ASSHTO M288.

Pad Length

The exit pad should provide for entering and parking the longest anticipated construction vehicles. A pad is typically 50 feet long but the required length may be longer or shorter.
Pad Width

The exit pad width is typically 20 feet but may be narrower or wider to equal the full width of the vehicular egress.

Washing

A washing facility shall be provided if necessary to prevent mud and caked soil from being transported to public streets and highways. It shall be constructed of concrete, stone, and/or other durable materials. Provisions shall be provided for the mud and other material to be carried away from the washing facility to a sediment trap or basin to allow for settlement of the sediment from the runoff before it is released from the site.
Land Grading (LG)

Practice Description

Land grading is reshaping of the ground surface to provide suitable topography for buildings, facilities and other land uses, to control surface runoff, and to minimize soil erosion and sedimentation both during and after construction. This practice applies to sites where the existing topography must be modified to prepare for another land use, or where adapting proposed development to the existing landscape can reduce the erosion potential of the site and the cost of installing erosion and sediment control measures. In some instances other practices such as diversions or benches can be used to reduce the length of continuous slopes and reduce erosion potential.

Planning Considerations

A detailed plan should be developed by a qualified design professional for all land grading activities at the project site. The plan should show all areas to be disturbed, the areas of cut, areas of fill, and the finished elevation for all graded areas. Areas that will be mowed after the site is developed should have slopes planned that are not too steep for the type of mowing equipment that will be used for regular maintenance.

The grading plan should be designed to protect existing vegetation where possible, especially around natural drainageways. Grading activities should be scheduled to minimize the area disturbed at any one time during the construction process. The plan should include provisions for stabilizing disturbed areas immediately after final grading is completed. Provisions should also be made to
protect existing underground utilities. Finally, topsoil should be removed and stockpiled for use in revegetating the site.

The grading plan should also include necessary practices for controlling sediment and erosion at the site. These practices could include stable outlets and slope breaks such as diversions or benches.

Design Criteria

Site Preparation

A detailed survey of the construction site should be performed by a qualified surveyor prior to grading plan development. This survey should include existing topographic information at the site including existing elevations, existing drainage patterns, locations of existing overhead and underground utilities, and construction limit boundaries.

The grading plan should require that the existing topsoil at sites to be graded be removed as the first step in the grading process. The plan should include a location on the construction site where topsoil will be stockpiled. Stockpiled topsoil should be protected by temporary vegetation (see Temporary Vegetation practice) or other appropriate temporary cover, such as plastic, until it is used to cover disturbed areas in advance of permanent vegetation of the site.

The grading plan should include a schedule of disturbance activities that minimizes the area disturbed at any point in time using sequencing and staging concepts. In areas where clearing of existing vegetation is planned, the area should be cleared and grubbed by removing trees, vegetation, roots and other debris such as trash. In areas to be filled all loose or weak soil and oversized rocks should be removed from the area. The foundation of the area to be filled should consist of soil or rock material of adequate strength to support the proposed fill material and the structures to be built at the site. The exact depth of material to be removed should be determined by a qualified geotechnical professional according to accepted engineering standards.

Grading

A plan for placement of fill should be developed by a qualified geotechnical professional. The plan should specify the source of fill materials, which should be obtained on site if possible. Materials used for fill, when placed according to the plans and specifications, should provide sufficient strength to support structures planned for construction at the location.

Loose fill material should be placed in layers not exceeding 9” in thickness. The materials should be compacted to a moisture content and to a dry density that will produce the design bearing strength required for structures planned at the site. A qualified geotechnical engineer should provide fill placement specifications using standard accepted engineering practices. Long and/or steep slope lengths can result in rill and gully erosion on slopes. Erosion on these type slopes can be minimized by breaking the slope with
diversions or benches (see Diversion practice). Diversion widths should be compatible with the expected maintenance equipment. Care is needed in locating outlets that will be stable and not cause gully erosion. The following table gives general guidance on the horizontal spacing of slope breaks:

Table LG-1 Guidelines for Spacing Slope Breaks

<table>
<thead>
<tr>
<th>Slope (H:V)</th>
<th>Horizontal Spacing (Ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>20</td>
</tr>
<tr>
<td>2:1</td>
<td>40</td>
</tr>
<tr>
<td>3:1</td>
<td>60</td>
</tr>
<tr>
<td>4:1 and 5:1</td>
<td>80</td>
</tr>
<tr>
<td>6:1 to 9:1</td>
<td>120</td>
</tr>
<tr>
<td>10:1 or flatter</td>
<td>200</td>
</tr>
</tbody>
</table>

*Adjustments in spacing may be made to account for soil and site conditions and professional experience of the site designer.

In areas where seepage and ground water are present subsurface drains should be installed to improve slope stability or soil bearing capacity (see Subsurface Drain practice).

Steep slopes should be avoided if possible. Slopes that are to be vegetated should be 2 horizontal to 1 vertical or flatter. If the slope is to be maintained by tractor or other equipment the slope should be 3 horizontal to 1 vertical or flatter. Slopes should be designed to blend with surrounding topography as much as possible.

Erosion Control

The grading plan should include provisions for stabilization of graded areas immediately after final grading is completed. On areas that will have no additional disturbance, permanent vegetation should be applied immediately to the site (see Permanent Seeding practice) if grading is finished during the planting season. If grading is finished outside of the recommended planting dates a temporary cover should be installed using a Temporary Seeding or other appropriate cover and the Permanent Seeding planned for the next planting period. On areas where work is to be interrupted or delayed for 14 calendar days or longer, such as topsoil stockpiles, the area should be stabilized using mulch or temporary seeding (see Mulching or Temporary Seeding practice). Other stabilization measures such as hydraulic mulch or erosion control blankets should be used in extreme conditions, such as steep slopes and channels.

Where practical, runoff from undisturbed off-site areas should be diverted around the construction site to prevent erosion on the disturbed areas (see Diversion practice).

Sediment Control

Required sediment control practices should be installed before the land disturbance activities in the drainage area of the sediment control practices. Until
disturbed areas can be stabilized, appropriate sediment control measures will be maintained to minimize sediment delivery off-site. Measures should include as a minimum:

- Sediment Barriers – Placed along toes of slopes (see Sediment Barrier practice).

- Sediment Basins – Divert sediment laden runoff to basins as needed to minimize off-site sedimentation (see Sediment Basin practice).

- Inlet Protection – Where sediment-laden runoff is diverted to on-site stormwater drain inlets, the inlets should be protected with an appropriate sediment control practice.

- Stabilized Outlets – All runoff from the site should be conveyed in stabilized channels (see Grassed Swale, Lined Swale, Rip-rap Lined Swale, or other appropriate channel stabilization).
Topsoiling (TSG)

Practice Description

Topsoiling is the removal of a desirable soil surface, referred to as topsoil, at a site prior to construction and using it on areas to be vegetated. Topsoiling a site usually improves the quality of the plant growth medium at the site and increases the likelihood of successful plant establishment and performance. This practice applies to sites that are to be disturbed by excavation, compaction or filling, and to other areas where the subsoil is unsuitable for plant growth.

Planning Considerations

Topsoil is the surface layer of the soil profile, generally characterized as darker than the subsoil due to enrichment with organic matter. It is the major zone of root development and biological activity. Microorganisms that enhance plant growth thrive in this layer. Topsoil can usually be differentiated from subsoil by texture as well as color. Clay content usually increases in the subsoil.

The depth of topsoil found on an undisturbed site may be quite variable over the proposed construction area because different soils have various depths of the surface layer. On severely eroded sites the original topsoil may be non-existent with the previous subsoil now occupying the surface.

Advantages of topsoil include its high organic-matter content and friable consistency (soil aggregates can be crushed with only moderate pressure), and its
available water-holding capacity and nutrient content. Most often it is superior to subsoil in these characteristics. The texture and friability of topsoil are usually much more conducive to seedling emergence and root growth.

In addition to being a better growth medium, topsoil is often less erodible than subsoil because it has less clay and more organic matter and the coarse texture of topsoil increases infiltration capacity and reduces runoff.

Although topsoil provides an excellent growth medium, there are disadvantages to its use. Stripping, stockpiling, and reapplying topsoil, or importing topsoil, increases construction time and may increase construction costs. Topsoiling can delay seeding or sodding operations, increasing the exposure time of denuded areas. Most topsoil contains weed seeds and weeds may compete with desirable species.

When properly limed and fertilized, subsoils may provide a good growth medium especially if there is adequate rainfall or irrigation water to allow root development in otherwise high density material. However, in most instances topsoiling should be used to provide the best opportunity for successful establishment and sustainability of the planned vegetative cover.

Topsoiling is strongly recommended where ornamental plants or high-maintenance turf will be grown. Topsoiling is a recommended procedure when establishing vegetation on shallow soils, soils containing potentially toxic materials, and soils of critically low pH (high acid) levels.

If topsoiling is to be done, the following items should be considered:

- An adequate volume of topsoil should exist on the site or be available locally. Topsoil will be spread at a lightly compacted depth of 4” or greater.

- Locate the topsoil stockpile should be located so that it meets specifications and does not interfere with work on the site, block drainage or release appreciable amounts of sediment.

- Allow sufficient time in scheduling for topsoil to be spread and bonded prior to seeding, sodding, or planting.

- Take care not to apply topsoil to subsoil if the two soils have contrasting textures without disking or chiseling to create a favorable interface and bond. Sandy topsoil over clayey subsoil without disking or chiseling is a particularly poor combination, as water creeps along the junction between the soil layers and on steep slopes may cause the topsoil to slough.
Design Criteria

Materials

Field evaluation of the site should be made to determine if there is sufficient surface soil of good quality to justify stripping. Topsoil shall be friable and loamy (loam, sandy loam, silt loam, sandy clay loam, and clay loam). It shall be relatively free of debris, trash, stumps, rocks, roots and noxious weeds, and shall give evidence of being able to support healthy vegetation. It shall contain no substance that is potentially toxic to plant growth.

Topsoil should meet the following criteria:

- pH range should be from 6.0-7.0. If pH is less than 6.0, lime should be added in accordance with soil test results or in accordance with the recommendations of the vegetative establishment practice being used.
- Soluble salts shall not exceed 500 ppm.
- If additional off-site topsoil is needed, it should meet the standards stated above.
- The depth of material meeting the above qualifications should be at least 4”. Soil factors such as rock fragments, slope, depth to water table, and layer thickness affect the ease of excavation and spreading of topsoil.

Generally, the upper part of the soil, which is richest in organic matter, is most desirable; however, material excavated from deeper layers may be worth storing if it meets the other criteria listed above.

Stripping

Strip only those areas that will be affected by construction or development. A normal stripping depth is 4-6” but deeper depths may be satisfactory if the soil is suitable and undercutting is allowable in locations such as buildings, water impoundment structures, roadways, etc. Appropriate sediment control measures such as sediment barriers, sediment basins, inlet protection, etc., should be in place before the topsoil is stripped. Stripping should not be done on areas intended to support conventional on-site effluent disposal lines (field lines).

Stockpiling

The stockpile location should be out of drainageways and traffic routes. Stockpiles should not be placed on steep slopes where undue erosion will take place. Measures should be taken to prevent erosion of the stockpiles. These would include:

- Mulching the stockpile when it is left inactive for over 13 days.
- Planting temporary vegetation when the stockpile is to be inactive over 30 days.

- Covering the stockpile with plastic whenever the piles are small and any soil loss would provide sediment to damage existing buildings or facilities or enter waters.

- Planting permanent vegetation when the stockpile use will be inactive over 12 months.

- In cases where the stockpile is small and will be removed in less than 14 days, it may be more practical to use a sediment barrier than an erosion control practice.

Site Preparation

Areas to be covered with topsoil shall be excavated, graded, filled and shaped to the proper lines, grades and elevations before topsoil placement is started.

The subgrades should be checked for pH and limed if it is less than 6.0. Liming shall be done in accordance with soil tests and in relation to the seeding mixture to be planted. Incorporate lime to a depth of at least 2” by diskin.

Applying Topsoil

The subsoil should be disked or chiseled to a depth of 2” or more to enhance bonding of the subsoil and topsoil, immediately before placement of topsoil. Topsoil should be uniformly spread to a minimum compacted depth of 4”.

Required volumes of topsoil may be determined using Table TSG-1.

<table>
<thead>
<tr>
<th>Depth to Spread (inches)</th>
<th>Cubic Yards Per 1,000 Sq. Ft.</th>
<th>Cubic Yards Per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.1</td>
<td>134</td>
</tr>
<tr>
<td>2</td>
<td>6.2</td>
<td>268</td>
</tr>
<tr>
<td>3</td>
<td>9.3</td>
<td>403</td>
</tr>
<tr>
<td>4</td>
<td>12.4</td>
<td>537</td>
</tr>
<tr>
<td>5</td>
<td>15.5</td>
<td>672</td>
</tr>
<tr>
<td>6</td>
<td>18.6</td>
<td>806</td>
</tr>
</tbody>
</table>

When applying topsoil, maintain needed erosion control practices such as diversions, grassed swales, lined swales, etc. Topsoil should not be spread when it or the subgrade is frozen or muddy.

Precautions should be taken to prevent layering of the topsoil over the subsoil. Mixing and bonding of the two soils should be enhanced.

Settling of the topsoil is necessary to bond the soils together, but excessive compaction should be prevented. Light compaction is necessary to increase soil strength, reduce erosion and enhance vegetation establishment.
Excessive compaction should be prohibited as it increases runoff and inhibits seed germination and root development.

Surface irregularities that would impede drainage, increase erosion or otherwise damage the site should be removed in final grading.